skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Edwards, Bethanie R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lipids are essential biomolecules for cell physiology and are commonly used as biomarkers to elucidate biogeochemical processes over a large range of environments and timescales. Here, we use high-temporal-resolution lipidomic analysis to characterize the surface ocean community in the productive upwelling region overlying the Monterey Bay Canyon. We observed a strong diel signal with a drawdown of lipids at night and an increase during the day that seemed to correspond to wholesale removal of lipids from the surface ocean as opposed to internal metabolism. Individual lipid species were organized into coregulated groups that were interpreted as representing different phytoplankton guilds. Concentrations of long-chained triacylglycerols (TAGs) showed unique patterns over the course of five days. TAGs were used to estimate the amount of energy cycled through the surface ocean. These calculations revealed diurnal carbon cycling that was on scales comparable to net primary production. The diel pattern dissipated from most lipid modules on Day 3 as tidal forcing increased at our site with the advent of the new moon. Pigment analysis indicated that the community shifted from a diatom-dominated community to a more diverse assemblage, including more haptophytes, chlorophytes, and Synechococcus during the new moon. The shift in community appears to promote higher nutritional quality of biomass, with more essential fatty acids in the surface ocean during the spring tide. This analysis showcases the utility of lipidomics in characterizing community dynamics and underscores the importance of considering both diel and tidal timescales when sampling in productive coastal regions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The ocean microbe‐metabolite network involves thousands of individual metabolites that encompass a breadth of chemical diversity and biological functions. These microbial metabolites mediate biogeochemical cycles, facilitate ecological relationships, and impact ecosystem health. While analytical advancements have begun to illuminate such roles, a challenge in navigating the deluge of marine metabolomics information is to identify a subset of metabolites that have the greatest ecosystem impact. Here, we present an ecological framework to distill knowledge of fundamental metabolites that underpin marine ecosystems. We borrow terms from macroecology that describe important species, namely “dominant,” “keystone,” and “indicator” species, and apply these designations to metabolites within the ocean microbial metabolome. These selected metabolites may shape marine community structure, function, and health and provide focal points for enhanced study of microbe‐metabolite networks. Applying ecological concepts to marine metabolites provides a path to leverage metabolomics data to better describe and predict marine microbial ecosystems. 
    more » « less
    Free, publicly-accessible full text available July 19, 2026
  3. Lauritano, Chiara; Ianora, Adrianna (Ed.)
    Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host–virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host–virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects. 
    more » « less
  4. Sinking particles are a critical conduit for the export of organic material from surface waters to the deep ocean. Despite their importance in oceanic carbon cycling and export, little is known about the biotic composition, origins, and variability of sinking particles reaching abyssal depths. Here, we analyzed particle-associated nucleic acids captured and preserved in sediment traps at 4,000-m depth in the North Pacific Subtropical Gyre. Over the 9-month time-series, Bacteria dominated both the rRNA-gene and rRNA pools, followed by eukaryotes (protists and animals) and trace amounts of Archaea. Deep-sea piezophile-like Gammaproteobacteria, along with Epsilonproteobacteria, comprised >80% of the bacterial inventory. Protists (mostly Rhizaria, Syndinales, and ciliates) and metazoa (predominantly pelagic mollusks and cnidarians) were the most common sinking particle-associated eukaryotes. Some near-surface water-derived eukaryotes, especially Foraminifera, Radiolaria, and pteropods, varied greatly in their abundance patterns, presumably due to sporadic export events. The dominance of piezophile-like Gammaproteobacteria and Epsilonproteobacteria, along with the prevalence of their nitrogen cycling-associated gene transcripts, suggested a central role for these bacteria in the mineralization and biogeochemical transformation of sinking particulate organic matter in the deep ocean. Our data also reflected several different modes of particle export dynamics, including summer export, more stochastic inputs from the upper water column by protists and pteropods, and contributions from sinking mid- and deep-water organisms. In total, our observations revealed the variable and heterogeneous biological origins and microbial activities of sinking particles that connect their downward transport, transformation, and degradation to deep-sea biogeochemical processes. 
    more » « less